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Abstract: We give a proof of BCFW recursion relations for all tree-level amplitudes of

gravitons in General Relativity. The proof follows the same basic steps as in the BCFW

construction and it is an extension of the one given for next-to-MHV amplitudes by one

of the authors and P. Svrček in hep-th/0502160. The main obstacle to overcome is to

prove that deformed graviton amplitudes vanish as the complex variable parameterizing

the deformation is taken to infinity. This step is done by first proving an auxiliary recursion

relation where the vanishing at infinity follows directly from a Feynman diagram analysis.

The auxiliary recursion relation gives rise to a representation of gravity amplitudes where

the vanishing under the BCFW deformation can be directly proven. Since all our steps are

based only on Feynman diagrams, our proof completely establishes the validity of BCFW

recursion relations. This means that many results in the literature that were derived

assuming their validity become true statements.
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1. Introduction

The analytic computation of scattering amplitudes in gauge theory and gravity has always

been a very challenging problem. In principle, this problem is solved by using Feynman

diagrams. However, in practice, the fast growth in the number of diagrams makes the

calculation impossible.

In some cases, closed formulas have been found for large classes of amplitudes. One of

the main tools has been the use of recursion techniques. Many analytic formulas were found

or proven by using the Berends-Giele recursion relations introduced in the 80’s [1 – 5]. One

important example are the wonderfully simple formulas conjectured by Parke-Taylor [6] for

MHV (Maximally Helicity Violating) tree level amplitudes of gluons.

More recently, a new set of recursion relations for tree level amplitudes of gluons was

introduced by Britto, Feng and the third author [7]. These recursion relations were inspired

by [8, 9] and reproduced very compact results obtained in [10] by studying the IR behavior

of N = 4 one-loop amplitudes. A simple and elegant proof of the relations was later given
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by the same authors in collaboration with Witten in [11]. The proof is constructive and

gives rise to a method using the power of complex analysis for deriving similar relations

in any theory where physical singularities are well understood. The BCFW method has

been successfully applied in many contexts involving massless particles at tree and loop

level [12 – 19] as well as for massive particles at tree level [20].

The possibility of the existence of BCFW recursion relations in General Relativity

was first investigated in [21, 22]. There it was pointed out that the main obstacle to

establish the validity of the recursion relations is to prove that deformed amplitudes vanish

at infinity while individual Feynman diagrams diverge. In [21], the desired behavior was

checked for MHV amplitudes up to n < 11 under the (−,−) deformation using the BGK

formula [23]. In [22], it was shown that the BGK formula vanishes at infinity for any n1

under the (+,−) deformation. Also in [22], a proof based on Feynman diagrams was given

for all next-to-MHV amplitudes2 and for all amplitudes up to eight gravitons using the

KLT relations [24].

The fact that individual Feynman diagrams diverge very badly in the limit when the

deformation parameter is taken to infinity and yet the amplitude vanishes implies that a

large number of cancelations must happen. What was shown in [22] is that such cancelations

can be made explicit if representations of amplitudes where Feynman diagrams have been

re-summed are used.

This is just one more example where Feynman diagrams not only give rise to ex-

tremely long answers which then collapse to very compact expressions but actually imply

a completely wrong behavior of the amplitude for large momenta.

A surprising example of this, now at the loop level, is the work of [25 – 27] where

N = 8 supergravity has been shown to possess a remarkably good ultraviolet behavior

even though a direct power counting argument indicates that bad divergencies must be

present. Also recently, a careful study of the structure of certain one-loop amplitudes in

N = 8 supergravity shows that even though power counting implies that after a Passarino-

Veltman reduction [28] the amplitude should contain boxes, triangles, bubbles and rational

pieces only the boxes can have non-zero coefficients [29, 30]. That this might hold for

generic one-loop amplitudes is now known as the no-triangle hypothesis [29, 30]. A striking

possibility, which could explain all these properties, is that a twistor string-like construction

for this theory could exists [31 – 33].

In this paper we give a complete proof that the miraculous behavior exhibited in

next-to-MHV tree level amplitudes of gravitons in [22] actually extends to all amplitudes.

The strategy we follow is exactly the same as the one used in [22] to prove the next-

to-MHV case. We use an auxiliary recursion relation to derive a more convenient repre-

sentation for the amplitudes and then show that they vanish at infinity under the BCFW

deformation.

The most important aspect of our proof is that both the auxiliary recursion relations

and the vanishing under the BCFW deformation are proven using only Feynman diagram

1Since the BGK formula has been tested against Feynman diagrams only for n < 11 [23], one cannot

make a general statement for actual amplitudes based on BGK.
2Although not mentioned in [22], this technique clearly also works for MHV amplitudes.
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arguments. Since Feynman diagrams are the basic way to define gravity amplitudes, our

result completely establishes the validity of the BCFW recursion relations for General

Relativity.

The auxiliary recursion relations are obtained by using a deformation that affects the

maximum possible number of polarization tensors while keeping propagators linear func-

tions in the deformation parameter. Such a deformation was also introduced in [22]. Quite

interestingly, this “maximal” deformation on a given amplitude induces non-maximal de-

formations on amplitudes with smaller number of gravitons. One of the non-maximal defor-

mations that naturally shows up only affects gravitons of a given helicity. Very interesting

results have been obtained in the literature by assuming that under such deformations

amplitudes vanish at infinity. More precisely, Bjerrum-Bohr et.al were able to derive MHV

expansions for gravity in [34] along the same lines as done for gauge theory by Risager

in [35]. Since all non-maximal deformations can be thought of a compositions of the basic

BCFW one, our proof validates the assumptions made in [34].

It is also important to mention that at one-loop in gauge theory one can find that

compositions of BCFW deformations can vanish at infinity while individual deformations

do not. This was actually the motivation for the first use of compositions in the literature

in [36].

This paper is organized as follows: In section II, we follow the same steps as in the

original BCFW construction to show the form of recursion relations for gravity amplitudes

that can be obtained if one assumes that the amplitudes vanish at infinity under the

deformation. In section III we prove that statement by using auxiliary recursion relations.

In section IV, we use Ward identities for MHV amplitudes to show how our proof implies

the validity of other recursion relations obtained by different deformations. In section V we

give our conclusions and future directions. Part of the proof of the validity of the auxiliary

recursion relations is given in the appendix.

1.1 Preliminaries and conventions

Tree level amplitudes of gravitons are rational functions of the momenta of the gravitons

and multilinear functions of the polarization tensors. It is convenient to encode all the

information in terms of spinor variables using the spinor-helicity formalism [37 – 39]. Each

momentum vector can be written as a bispinor paȧ = λaλ̃ȧ. We define the inner product of

spinors as follows 〈λ, λ′〉 = ǫabλaλ
′
b and [λ̃, λ̃′] = ǫȧḃλ̃ȧλ̃

′
ḃ
. Polarization tensors of gravitons

can be expressed in terms of polarization vectors of gauge bosons as follow

ǫ+

aȧ,bḃ
= ǫ+

aȧǫ
+

bḃ
, ǫ−

aȧ,bḃ
= ǫ−aȧǫ

−

bḃ
(1.1)

where polarization vectors of gauge bosons are given by

ǫ+
aȧ =

µaλ̃ȧ

〈µ, λ〉
, ǫ−aȧ =

λaµ̃ȧ

[λ̃, µ̃]
(1.2)

with µa and µ̃ȧ arbitrary reference spinors.
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Using the spinor-helicity formalism all the information about a particular graviton is

encoded in λ, λ̃ and the helicity, h, which can be positive or negative. Therefore a given

amplitude can be written as

Mn(1h1 , . . . , nhn) = κn−2δ(4)

(

n
∑

i=1

λ(i)
a λ̃

(i)
ȧ

)

Mn(1h1 , . . . , nhn), (1.3)

where κ2 = 8πGN, the label (i) on the spinors is the particle label and the notation

(ihi) stands for (λ(i), λ̃(i), hi). In the rest of this paper we will only be concerned with

Mn(1h1 , . . . , nhn).

Sometimes it will be convenient to write (ihi) as phi

i where pi is the momentum of the

ith graviton.

Also useful is the following notation: 〈λ|P |λ̃′] = −λaPaȧλ̃
′ȧ. The minus sign in the

definition is there so that if Paȧ is a null vector µaµ̃ȧ one has 〈λ|P |λ̃′] = 〈λ, µ〉[µ̃, λ̃′].

This formula has several generalizations. In this paper we only use the one that involves

two generic vectors P and Q that are written as sums of null vectors as P =
∑

s ps and

Q =
∑

r pr. Then we have

〈λ|P Q|λ′〉 =
∑

r,s

〈λ, λ(r)〉[λ̃(r), λ̃(s)]〈λ(s), λ′〉. (1.4)

2. BCFW construction for gravity amplitudes

Consider a scattering amplitude of n gravitons Mn(1h1 , . . . , nhn). Construct a one complex

parameter deformation of the amplitude that preserves the physical properties of being

on-shell and momentum conservation. The simplest way to achieve this is by choosing two

gravitons of opposite helicities,3 say i+ and j−, and perform the following deformation

λ(i)(z) = λ(i) + zλ(j), λ̃(j)(z) = λ̃(j) − zλ̃(i). (2.1)

All other spinors remain the same. The deformation parameter z is a complex variable.

It is easy to check that this deformation preserves the on-shell conditions of all gravitons,

i.e., pk(z)2 = 0 for any k and momentum conservation since pi(z) + pj(z) = pi + pj.

The main observation is that the scattering amplitude is a rational function of z which

we denote by Mn(z). This fact follows from Mn(1h1 , . . . , nhn) being a rational function of

momenta and polarization tensors. Being a rational function of z, Mn(z) can be determined

if complete knowledge of its poles, residues and behavior at infinity is found.

We claim that Mn(z) only has simple poles and it vanishes as z is taken to infinity.

This means that

Mn(z) =
∑

α

cα

z − zα

(2.2)

where the sum is over all poles of Mn(z).

3This is always possible since tree-level amplitudes with all equal helicities vanish and are not of interest

for our discussion.
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The fact that Mn(z) only has simple poles follows by considering its form as a sum

over Feynman diagrams. Choosing a gauge where polarization tensors do not have poles

in z, i.e, one in which the reference spinors of the ith and jth gravitons are µa = λ
(j)
a and

µ̃ȧ = λ̃
(i)
ȧ respectively, the only possible singularities come from propagators. Propagators

are functions of momenta of the form

1

P 2
I

=
1

(
∑

k∈I pk)2
(2.3)

where I ⊂ {1, 2, . . . , n} is some subset of gravitons with more than one and less than n− 1

elements.

Clearly, the only propagators that can depend on z are those for which either i ∈ I

or j ∈ I but not both. Without loss of generality let us assume that i ∈ I. Then the

propagator has the form
1

P 2
I (z)

=
1

P 2
I (0) − z〈j|PI (0)|i]

. (2.4)

This shows that all singularities are simple poles. Their location is given by

zI =
P 2
I (0)

〈j|PI(0)|i]
. (2.5)

The proof that Mn(z) vanishes as z is taken to infinity is basically the main result of

this paper and it is presented in the next section. Here we simply assume it and continue

in order to present the final form the BCFW recursion relations.

The final step is the computation of the residues cI . This is easily done since close to

the region where a given propagator goes on-shell the amplitude factorizes as the product

of lower amplitudes. Collecting all these results one finds that

Mn(z) =
∑

I,J

∑

h=±

MI

(

{KI}, pi(zI),−P h
I (zI)

) 1

PI(z)2
MJ

(

{KJ }, pj(zI), P−h
I (zI)

)

(2.6)

where {I,J } is a partition of the set of all gravitons such that i ∈ I and j ∈ J , KI (KJ )

is the collection of all gravitons in I (J ) except for i (j) and h is the helicity of the internal

graviton.

The BCFW recursion relation is obtained by setting z = 0 in (2.6). It is important to

mention that the value of zI was determined by requiring PI(zI) be a null vector. Therefore

the BCFW recursion relations only involve physical on-shell amplitudes.

3. Vanishing of Mn(z) at infinity

In the previous section we showed that the validity of the BCFW recursion relations for

gravity amplitudes simply follows from the vanishing of Mn(z) at infinity. In this section

we provide a proof of this statement.

It is instructive to start by computing what the behavior of Mn(z) for large z is from

a naive Feynman diagram analysis.4 A generic Feynman diagram is schematically given by

4The reason we use the word “naive” is that the argument only takes into account the behavior of

individual diagrams and does not consider possible cancelations among them.
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the product of polarization tensors, propagators and vertices. We are looking for Feynman

diagrams that give the leading behavior for large z. We choose generic reference spinors in

polarization tensors such that

ǫ++
i (z)

aȧ,bḃ
∼

1

z2

µaλ̃
(i)
ȧ µbλ̃

(i)

ḃ

〈µ, λ(j)〉2
, ǫ−−

j (z)
aȧ,bḃ

∼
1

z2

λ
(j)
a µ̃ȧλ

(j)
b µ̃

ḃ

[λ̃(i), µ̃]2
, (3.1)

while all others are independent of z. Note that only vertices that depend on momenta can

give z contributions in the numerator. Therefore we should look for Feynman diagrams

with the maximum number of z dependent vertices. Such diagrams are those for which one

has only cubic vertices. For n gravitons there can be a maximum of n − 2 vertices. Each

vertex can give at most a z2 dependence.5 Therefore, the leading diagrams will have a

z2(n−2) dependence from vertices. Finally we are left with propagators. The z dependence

flows in the diagram along a unique path connecting the ith graviton with the jth graviton.

Therefore there are n − 3 of them. Each propagator gives a 1/z contribution. Collecting

all contributions gives

Mn(z) ∼

(

1

z4

)

(

z2(n−2)
)

(

1

z(n−3)

)

= zn−5. (3.2)

This implies that Mn(z) ∼ 0 for large z only if n < 5. As n increases individual Feynman

diagrams diverge more at infinity.

This means that we have to find a better representation of Mn(z) where Feynman

diagrams have been re-summed into better behaved objects. This is the main strategy of

our proof.

The proof is straightforward but it might be somewhat confusing if an overall picture

is not kept in mind. This is why we first provide an outline and then give the details.

3.1 Outline of the proof

We start by finding a convenient representation of Mn(z). The new representation comes

from some auxiliary recursion relations. The auxiliary recursion relations are obtained

using a BCFW-like construction but with a deformation under which individual Feynman

diagrams vanish at infinity. The way we achieve this is by making as many polarization

tensors go to zero at infinity as possible.

Let us denote the new deformation parameter w. Then one has that Mn(w) → 0 as

w → ∞. The recursion relations are schematically of the form

Mn =
∑

I,J

∑

h=±

Mh
I (wI)

1

P 2
I

M−h
J (wI) (3.3)

where the sum is over some sets I,J of gravitons. These auxiliary recursion relations

actually provide the first example of recursion relations valid for all physical amplitudes of

gravitons. However, the price one pays for being able to prove that Mn(w) → 0 as w → ∞

5This and all statements about the general structure of Feynman diagrams can be easily derived from

the lagrangian density L =
√−gR with gµν = ηµν + hµν .
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directly from Feynman diagrams is that the number of terms in (3.3) is very large and

many of the gravitons depend on wI . These features make (3.3) not very useful for actual

computations.

The next step in our proof is to apply the BCFW deformation to Mn now given by (3.3).

Then we have

Mn(z) =
∑

{i,j}⊂J

∑

h=±

Mh
I (wI)

1

P 2
I

M−h
J (wI , z) +

∑

i∈I,j∈J

∑

h=±

Mh
I (wI(z), z)

1

P 2
I (z)

M−h
J (wI(z), z)

(3.4)

where the z dependence on the right hand side can appear implicitly through wI(z) as

well as explicitly. The first set of terms on the right hand side of (3.4) has both deformed

gravitons in J . Therefore, all the z dependence is confined to MJ . We then show that MJ

is a physical amplitude with less than n gravitons under a BCFW deformation. Therefore,

we can use an induction argument to prove that it vanishes as z → ∞.

For the second set of terms the z dependence appears not only explicitly but also

implicitly via wI in many gravitons. Quite nicely, it turns out that one can show that

each one of those terms vanishes as z goes to infinity by using a Feynman diagram analysis

similar to the one done at the beginning of this section. The reason for this is again the

large number of polarization tensors that pick up a z dependence.

There is a special case that has to be considered separately. This is when there is only

one positive helicity graviton in I, i.e., the ith graviton. We prove the desired behavior at

infinity in this case at the end of this section.

3.2 Auxiliary recursion relation

The auxiliary recursion relations we need are obtained by using a composition of BCFW

deformations introduced in [22] and which was used to prove the vanishing of Mn(z) for

next-to-MHV amplitudes. The basic idea comes form the analysis of Feynman diagrams

we performed above. It is clear that the reason individual Feynman diagrams diverge as

z → ∞ for n ≥ 5 is that the number of propagators and vertices grow in the same way but

vertices give an extra power of z which can be compensated by two polarization tensors

that depend on z only if n is not too large. The key is then to perform a deformation that

will make more polarization tensors contribute.

Recall from the outline of the proof that the deformation parameter is denoted by w.

The simplest choice is to deform the λ’s of all positive helicity gravitons and the λ̃’s of

all negative helicity gravitons. This choice will give 1/w2n from the polarization tensors.

This makes Mn(w) go at most as 1/w4 even without taking into account the propagators.

Propagators are now quadratic functions of w and therefore they contribute 1/w2 each.

This last feature is what makes this choice very inconvenient since every multi-particle

singularity of the amplitude will result in two simple poles rather than one.

We are then looking for a deformation that gives a w dependence to the largest number

of gravitons and at the same time keeps all propagators at most linear functions of w. The

most general such deformation depends on the number of plus and minus helicity gravitons

in the amplitude. Let {r−} and {k+} denote the sets of negative and positive helicity

– 7 –
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gravitons in the amplitude respectively. Also let m and p be the number of elements in

each. Then if p ≥ m the deformation is

λ̃(j)(w) = λ̃(j) − w
∑

s∈{k+}

α(s)λ̃(s), λ(k)(w) = λ(k) + wα(k)λ(j), ∀ k ∈ {k+} (3.5)

where j is a negative helicity graviton and α(k)’s can be arbitrary rational functions of

kinematical invariants.

If m ≥ p the deformation is

λ(i)(w) = λ(i) + w
∑

s∈{r−}

α(s)λ(s), λ̃(k)(w) = λ̃(k) − wα(k)λ̃(i), ∀ k ∈ {r−} (3.6)

where i is a positive helicity graviton.

The deformation introduced in [22] to prove the case of next-to-MHV amplitudes

corresponds to taking all α(s) = 1 in (3.5). It turns out that not all choices of α(s) lead to

the desired behavior of individual Feynman diagrams at infinity. For example, any choice

that removes the w dependence on any single spinor or even on any linear combination

of subsets of them will fail. This is usually due to some subtle Feynman diagrams. It

is interesting that one has to use precisely the maximal choice. In other words, we have

to choose all α(s) = 1. Given that this is the choice we use in the rest of the paper, we

rewrite (3.5) and (3.6) with α(k) = 1 for later reference.

For p ≥ m:

λ̃(j)(w) = λ̃(j) − w
∑

s∈{k+}

λ̃(s), λ(k)(w) = λ(k) + wλ(j), ∀ k ∈ {k+} (3.7)

and j a negative helicity graviton.

If m ≥ p the deformation is

λ(i)(w) = λ(i) + w
∑

s∈{r−}

λ(s), λ̃(k)(w) = λ̃(k) − wλ̃(i), ∀ k ∈ {r−} (3.8)

and i a positive helicity graviton.

The proof that this choice gives Mn(w) → 0 as w → ∞ and more details are given in

the appendix. The proof involves a careful analysis of when the w can possibly drop out

of propagators. This is basically the point where all other deformations fail.

Here we simply give the final form of the auxiliary recursion relations. Again we have

to distinguish cases. If p ≥ m we write Mn as sums of products of amplitudes with less

than n gravitons as follows:

Mn({r−}, {k+}) =

=
∑

I

∑

h=±

MI

(

{

r−I
}

,
{

k+
I (wI)

}

,−P h
I (wI)

) 1

P 2
I

MJ

(

{

r−J (wI)
}

,
{

k+
J (wI)

}

, P−h
I (wI)

)

(3.9)

where:
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• I and J are subsets of the set {1, . . . , n} such that I ∪ J = {1, . . . , n}. The sum is

over all partitions {I,J } of {1, . . . , n} such that at least one positive helicity graviton

is in I and j ∈ J .

• PI is the sum of all the momenta of gravitons in I;

•
{

r−I
}

≡ I− is the set of negative helicity gravitons in I;

•
{

r−J (wI)
}

is the set of negative helicity gravitons in J . The wI dependence is only

through λ̃(j)(wI);

•
{

k+
I (wI)

}

≡ I+ is the set of positive helicity gravitons in I. All of them have been

deformed and their dependence on wI is only through

λ(k)(wI) = λ(k) + wIλ(j); (3.10)

•
{

k+
J (wI)

}

is the set of positive helicity gravitons in J . All of them have also been

deformed via (3.10).

• The deformation parameter is given by

wI =
P 2
I

∑

k∈I+ 〈j|PI |k]
. (3.11)

This definition ensures that the momentum

PI(wI)aȧ = PI aȧ + wIλ(j)
a

∑

k∈I+

λ̃
(k)
ȧ (3.12)

is a null vector, i.e., PI(wI)2 = 0.

Now, if m ≥ p then we write Mn as a sum over terms involving the product of ampli-

tudes with less than n gravitons as follows:

Mn({r−}, {k+}) =

=
∑

I

∑

h=±

MI

(

{

r−I (wI)
}

,
{

k+
I (wI)

}

,−P h
I (wI)

) 1

P 2
I

MJ

(

{

r−J (wI)
}

,
{

k+
J

}

, P−h
I (wI)

)

(3.13)

where most definitions are as in the p ≥ m case except that the sets I and J are such

that i ∈ I and all the negative helicity gravitons and the ith positive helicity graviton are

deformed via (3.8) instead of (3.7).

The two rules, (3.9) and (3.13), provide a full set of recursion relations for gravity

amplitudes. To see this note that using them one can express any n-graviton amplitude as

the sum of products of two amplitudes with less than n gravitons. The smaller amplitudes

which depend on deformed spinors and the intermediate null vector P (wI) are completely

“physical” in the sense that by construction their momenta are on-shell and satisfy mo-

mentum conservation. Therefore they admit a definition in terms of Feynman diagrams

again and can serve as a starting point to apply either (3.9) or (3.13), depending on the

new number of plus and minus helicity gravitons.
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3.3 Induction and Feynman diagram argument

Consider any n-graviton amplitude under the BCFW deformation (2.1) on gravitons i+

and j−:

λ(i)(z) = λ(i) + zλ(j), λ̃(j)(z) = λ̃(j) − zλ̃(i). (3.14)

Without loss of generality we can assume that Mn has p ≥ m and use (3.9) as our

starting point. If m ≥ p we use (3.13) and everything that follows applies equally well.

Note that the choice of deformed gravitons in (3.14) is correlated to that in (3.9)

or (3.13).

Our goal now is to prove that by using (3.14) on (3.9) the function Mn(z) vanishes as

z is taken to infinity.

Let us consider each term in the sum of (3.9) individually. There are two classes of

terms. The first kind is when {i, j} ⊂ J . The second kind is when i ∈ I and j ∈ J .

Consider a term of the first kind,

∑

h=±

MI

(

{

r−I
}

,
{

k+
I (wI)

}

,−P h
I (wI)

) 1

P 2
I

MJ

(

{

r−J (wI , z)
}

,
{

k+
J (wI , z)

}

, P−h
I (wI)

)

.

(3.15)

Since both i+ and j− belong to J , the momentum PI does not depend on z. Likewise

from the definition of wI in (3.11) one can see that it does not depend on z. Therefore,

the z dependence is confined to the second amplitude in (3.15) which we can write more

explicitly as

MJ

(

{

r−J ′

}

,
{

k+
J ′(wI)

}

, {λ(i)(wI , z), λ̃(i)}, {λ(j), λ̃(j)(wI , z)}, P−h
I (wI)

)

(3.16)

where the set J ′ = J \ {i, j}. It is straightforward to show that

λ(i)(wI , z) = λ(i)(wI) + zλ(j), λ̃(j)(wI , z) = λ̃(j)(wI) − zλ̃(i). (3.17)

The fact that λ(i)(wI) and λ̃(j)(wI) get deformed exactly in the same way as λ(i) and

λ̃(j) do is what allows us to use induction for these terms. Note that the amplitude (3.16)

is therefore a physical amplitude with a BCFW deformation. The number of gravitons is

less than n and by our induction hypothesis it vanishes as z goes to infinity.

To complete the induction argument it suffices to note that the auxiliary recursion

relations we are using can reduce any amplitude to products of three graviton amplitudes.

Finally, recall that the Feynman diagram argument at the beginning of this section showed

that amplitudes with less than five gravitons vanish at infinity under the BCFW deforma-

tion.

Consider now a term of the second kind,

∑

h=±

MI

(

{

r−I
}

,
{

k+
I (wI(z), z)

}

,−P h
I (wI(z), z)

) 1

P 2
I (z)

MJ

(

{

r−J (wI(z), z)
}

,
{

k+
J (wI(z))

}

, P−h
I (wI(z), z)

)

.

(3.18)
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Recall that for these terms i+ ∈ I while j− ∈ J . The z dependence we have displayed

in (3.18) looks complicated at first since

wI(z) =
PI(z)2

∑

k∈I+ 〈j|PI(z)|k]
(3.19)

appears to be a rational function of z since PI(z)aȧ = PI aȧ + zλ
(j)
a λ̃

(i)
ȧ . Note, however,

that λ̃(k)’s with k ∈ I+ do not depend on z and that the z dependence zλ
(j)
a λ̃

(i)
ȧ in PI(z)

drops out of the denominator thanks to the contraction with 〈j|.

Then we find that wI(z) is simply a linear function of z:

wI(z) = wI − z

(

〈j|PI |i]
∑

k∈I+ 〈j|PI |k]

)

(3.20)

where wI is just the undeformed one, i.e., wI(0).

The final step before we proceed to study the behavior for z → ∞ using Feynman

diagrams is to determine the properties of the internal graviton that enters with opposite

helicities in the amplitudes of (3.18). The momentum of the internal graviton is given by

PI(wI(z), z) =
∑

k∈I−

pk + pi(wI(z), z) +
∑

s∈I+, s 6=i

ps(wI(z)). (3.21)

The important observation is that the z-dependence can be fully separated as follows

PI(wI(z), z) = PI(wI) + zλ(j)



−

(

〈j|PI |i]
∑

k∈I+ 〈j|PI |k]

)

∑

s∈I+

λ̃(s) + λ̃(i)



 (3.22)

where PI(wI) is the z-undeformed one, i.e., PI(wI(0), 0).

Note that we have written PI(wI(z), z), which is a null vector, as the sum of two

null vectors. For real momenta, this would imply that all three vectors are proportional.

However, in this case all three vectors are complex and all that is required is that either all

λ’s or all λ̃’s be proportional. We claim that in this particular case all λ̃’s are proportional.

To see this note that if we write PI(wI)aȧ = λ
(P )
a λ̃

(P )
ȧ , then λ̃

(P )
ȧ is proportional to ζȧ =

ηaPI(wI)aȧ for some arbitrary spinor ηa.

We claim that the λ̃ spinor of the vector multiplying z in (3.22) is also proportional to

ζ ȧ if ηa = λ
(j)
a . In this case, ζȧ = λ(j) aPI(wI)aȧ = λ(j) aPI aȧ. To prove our claim consider

the inner product of the two spinors


−

(

〈j|PI |i]
∑

k∈I+ 〈j|PI |k]

)

∑

s∈I+

λ̃
(s)
ȧ +λ̃

(i)
ȧ



 ζ ȧ =





(

〈j|PI |i]
∑

k∈I+ 〈j|PI |k]

)

∑

s∈I+

〈j|PI |s]−〈j|PI |i]



 .

(3.23)

The right hand side of (3.23) vanishes trivially showing that the two spinors are pro-

portional.

Therefore, it follows that we can write PI(wI(z), z)aȧ = λa(z)λ̃P
ȧ where λa(z) = λ

(P )
a +

zβλ
(j)
a for some β which is z independent. Note that if z = 0 we recover PI(wI)aȧ =

λ
(P )
a λ̃

(P )
ȧ .

– 11 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
7

Let us turn to the analysis of the amplitudes in (3.18) to show that their product

vanishes as z is taken to infinity. In other words, we will see that MI and MJ may not

vanish simultaneously but their product together with the propagator always does.

Consider the first amplitude MI

({

r−I
}

,
{

k+
I (wI(z), z)

}

,−P h
I (wI(z), z)

)

. Let the

number of particles in the sets {r−I } and {k+
I } be mI and pI respectively.6

The Feynman diagram analysis is very similar to that performed at the beginning of

section III. The leading Feynman diagram is again one with only cubic vertices that posses

a quadratic dependence on momenta. The number of cubic vertices is the total number of

particles7 minus two, i.e, mI + pI − 1. Therefore the contribution from vertices gives at

most a factor of z2(mI+pI−1). There are pI +1 polarization vectors that depend on z, giving

a total contribution of 1/z2(pI+h). Here we have used that since z enters in −P h
I (wI(z), z)

only through λ(z), its polarization tensor gives a contribution of 1/z2h. Finally, we need

to count the number of propagators that depend on z. It turns out that there are exactly

mI + pI − 2 of them giving a contribution of 1/zmI+pI−2. This last statement is not

obvious since there could be accidental cancelations of the z dependence. Let us continue

with the argument here and we will prove that there is no accidental cancelations within

the propagators in the next subsection.8 Collecting all factors we get

MI

(

{

r−I
}

,
{

k+
I (wI(z), z)

}

,−P h
I (wI(z), z)

)

∼
1

zpI−mI+2h
. (3.24)

The propagator 1/P 2
I (z) in (3.18) goes as 1/z.

The reader might have noticed that in this argument special care is required when

I+ = {i}. We postpone the study of this case to the end of the section. Until then we

simply assume that i ∈ I+ but I+ 6= {i}.

Consider now the second amplitude in (3.18),

MJ

(

{

r−J (wI(z), z)
}

,
{

k+
J (wI(z))

}

, P−h
I (wI(z), z)

)

. (3.25)

Let the number of gravitons in {r−J } and {k+
J } be mJ and pJ respectively.

The cubic vertices give again a factor of z2(pJ +mJ−1). The polarization tensors give

a factor of 1/z2(pJ −h+1). Here we have taken into account the contribution from the z

dependent negative helicity graviton, i.e, the jth graviton, and from the internal gravi-

ton, P−h
I (wI(z), z). Finally, the propagators contribute again a factor of 1/zpJ +mJ−2.

Collecting all factors we get

MJ

(

{

r−J (wI(z), z)
}

,
{

k+
J (wI(z))

}

, P−h
I (wI(z), z)

)

∼
1

zpJ−mJ−2(h−1)
. (3.26)

Combining all contributions from (3.24), the propagator and (3.26), the leading z behavior

of (3.18) is 1/zp−m+3.

6Note that if h = + this is a physical amplitude where only the λ’s of positive helicity gravitons have

been deformed. It is interesting to note that this deformation is basically the one introduced by Risager

in [35] and later in [34] to construct an MHV diagram expansion for gravity amplitudes.
7The total number of gravitons in MI is mI + pI + 1 since −P h

I (wI(z), z) should also be included.
8More precisely, what we prove in the next subsection is that trivial cancelations in which neither

propagators nor vertices depend on z are the only ones that can occur.
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This shows that all the amplitudes with p ≥ m vanish at infinity.

As stated at the beginning of this subsection, a similar discussion holds for the case of

amplitudes with m ≥ p: by repeating the same counting starting from relation (3.13), the

behavior at infinity of terms of the second kind turns out to be 1/zm−p+3. Terms of the

first kind can again be treated by induction.

It is important to mention that the way amplitudes vanish at infinity is generically

only as 1/z2. This is because terms of the first kind which are treated by induction vanish

as three-graviton amplitudes do, i.e, as 1/z2.

This completes our proof of the vanishing of Mn(z) as z goes to infinity up to the claim

made about the number of propagators that contribute a 1/z factor and the exceptional

case when I+ = {i}. We now turn to these crucial steps of our proof.

3.4 Analysis of the contribution from propagators

One thing left to prove is that in the leading Feynman diagrams contributing to the first

amplitude, MI , there are exactly mI + pI − 2 propagators giving a 1/z contribution at

infinity while in the second amplitude, MJ , there are exactly mJ + pJ − 2 of them.

3.4.1 Propagators in leading Feynman diagrams of MI

Let us start with MI . The argument here uses similar elements to the ones given in the

appendix where we provided a proof of the auxiliary recursion relations.

Consider a given Feynman diagram. A propagator naturally divides the diagram into

two subdiagrams. Let use denote them by L and R. Without loss of generality, we can

always take the graviton with momentum −P h
I (wI(z), z) to be in R. In the set of positive

helicity gravitons, {k+
I (wI(z), z)}, there is one that is special; the ith graviton. We consider

two cases, the first is when i ∈ L+ and the second when i ∈ R+.

Case A: i ∈ L+. Let i ∈ L+, then the propagator under consideration has the form

PL(wI(z), z) = PL(wI(0)) + zλ(j)



−
〈j|PI |i]

∑

k∈I+〈j|PI |k]

∑

s∈L+

λ̃(s) + λ̃(i)



 . (3.27)

We are interested in asking when

PL(wI(z), z)2 = PL(wI(0))2 + z

(

〈j|PI |i]
∑

k∈L+〈j|PL|k]
∑

k∈I+〈j|PI |k]
− 〈j|PL|i]

)

(3.28)

can be z independent. Therefore we have to analyze under which conditions the factor

multiplying z can be zero for a generic choice of momenta and polarization tensors of the

physical gravitons subject only to the overall momentum conservation constrain.

Let us write the factor of interest as follows

〈j|PI |i]
∑

k∈L+

〈j|PL|k] − 〈j|PL|i]
∑

k∈I+

〈j|PI |k] = λ(j) aλ(j) bPL aȧPI bḃ
T ȧḃ (3.29)

with

T ȧḃ = λ̃(i) ȧ
∑

k∈L+

λ̃(k) ḃ − λ̃(i) ḃ
∑

k∈I+

λ̃(k) ȧ. (3.30)
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Here we have to consider two different cases:9

• I+ \ L+ 6= ∅.

• I+ = L+ and L+ 6= {i}.

Let us start by assuming that I+ \ L+ is non-empty and that, say, s ∈ I+ \ L+.

The space of kinematical invariants we consider is determined by the momentum and

polarization tensors of each of the original gravitons. Consider both objects for the sth

graviton

ǫ
+ (s)

aȧ,bḃ
=

µaλ̃
(s)
ȧ µbλ̃

(s)

ḃ

〈µ, λ(s)〉2
, p

(s)
aȧ = λ(s)

a λ̃
(s)
ȧ . (3.31)

It is clear that if we take {λ
(s)
a , λ̃

(s)
ȧ } to {t−1λ

(s)
a , tλ̃

(s)
ȧ } with t a fourth root of unity,

i.e, t4 = 1 then (3.31) is invariant. Therefore, any quantity that vanishes for t = 1

must also vanish for all four values of t. In particular, it must be the case that (3.29)

must vanish for all four values of t. Since momentum is not affected only the tensor T ȧḃ

changes. Taking the difference between two values of t, say t = 1 and t = i, we find that

T ȧḃ|t=1 − T ȧḃ|t=i ∼ λ̃(i) ḃλ̃(s) ȧ. Therefore, the vanishing of (3.29) implies that of

〈j|PL|i]〈j|PI |s] = 0. (3.32)

This condition is then equivalent to

tr (/pj /PL /pi /PL) = 0 or tr (/pj /PI /ps /PI) = 0 (3.33)

but these are constraints on the kinematical space which are not satisfied at generic points.

The second case we have to consider is when I+ = L+ and L+ 6= {i}. Let us introduce

the notation µ̃ȧ =
∑

k∈I+ λ̃
(k)
ȧ . Therefore the condition we want to exclude is

〈j|PI |i]〈j|PL|µ̃] − 〈j|PL|i]〈j|PI |µ̃] = 0. (3.34)

Using Schouten’s identity we can write this as

〈j|PIPL|j〉[i, µ̃] = 0. (3.35)

The vanishing of either factor10 implies a constraint for the space of kinematical invariants.

In the case of the second factor this can easily be seen by choosing s ∈ I+ and s 6= i, then

using the scaling by t with t4 = 1 to conclude that (ps + pi)
2 = 0.

This completes the proof that the z dependence cannot drop out of any propagator

and therefore all mI + pI − 2 of them give a 1/z factor in MI if i ∈ L.

9There are actually three cases. The third is when I+ = L+ = {i} but this is part of the special case

that is considered at then end of the section.
10See section 1.A for the explanation of the notation in the first factor.
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Case B: i ∈ R+. The analysis when i ∈ R is completely analogous except for the fact

that there is one case that was not possible before. As we will show, this will correspond

to diagrams which give a non-leading contribution.

Consider the analog of (3.28)

PL(wI(z), z)2 = PL(wI(0))2 + z〈j|PI |i]

(
∑

k∈L+〈j|PL|k]
∑

k∈I+〈j|PI |k]

)

. (3.36)

The new case is when L+ = ∅, then the z dependence drops out. Of course, this is

not a problem because if the set L+ is empty it means that nothing on the subdiagram L

depends on z, including the cubic vertices. Therefore, neither propagators nor cubic vertices

contribute. One can then concentrate on the subdiagram R, but this subdiagram has less

particles than the total diagram and the same number of z-dependent polarization tensors.

Therefore these diagrams go to zero even faster than diagrams where L+ is not empty.

3.4.2 Propagators in leading Feynman diagrams of MJ

Let us now study the leading Feynman diagrams contributing to MJ . Again, the propa-

gator divides the diagram in two subdiagrams that we denote L and R. Without loss of

generality, we can always take the graviton with momentum P−h
I (wI(z), z) to be in R. As

in the previous discussion we have a special graviton, i.e, the jth graviton. Therefore we

have to consider two cases, j ∈ L and j ∈ R.

Case A: j ∈ L−. Let us first consider the case j ∈ L. The z dependence of λ̃(j)(wI(z), z)

is the most complicated of all. This is why we write it explicitly

λ̃(j)(wI(z), z)ȧ = λ̃(j)(wI)ȧ + z



−λ̃
(i)
ȧ +

〈j|PI |i]
∑

k∈I+〈j|PI |k]

∑

s∈{k+}

λ̃
(s)
ȧ



 . (3.37)

Using this and the fact that the set of labels of all positive helicity gravitons {k+} must be

equal to I+ ∪J+, we find that the propagator of interest has a momentum dependence of

the form

PL(wI(z), z)2 = PL(wI(0))2 + z

(

〈j|PL|i] − 〈j|PI |i]

∑

k∈I+∪(J+\L+)〈j|PL|k]
∑

k∈I+〈j|PI |k]

)

. (3.38)

We are then interested in asking when this expression can be z independent.

The analysis is similar to the one given for MI so we will be brief. The factor of

interest is now

〈j|PL|i]
∑

k∈I+

〈j|PI |k] − 〈j|PI |i]
∑

k∈I+∪(J+\L+)

〈j|PL|k]. (3.39)

We have to consider two cases:

• J+ \ L+ 6= ∅.

• J+ = L+ and I+ 6= {i}.
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In the first case we can assume that, say, the sth graviton is in J + \L+. Then by using

the argument that any statement about {λ(s), λ̃(s)} must also be true for {t−1λ(s), tλ̃(s)}

with t4 = 1 one can show that the vanishing of (3.39) implies a nontrivial constraint on

kinematical invariants that is not generically satisfied.

The second case is also similar to one we considered in the analysis of MI . Here we

have that I+ ∪ (J + \ L+) = I+ ∪ ∅ = I+. Therefore (3.39) becomes

〈j|PL|i]〈j|PI |µ̃] − 〈j|PI |i]〈j|PL|µ̃] (3.40)

where µ̃ȧ =
∑

s∈I+\{i} λ̃(s). Since by assumption I+\{i} 6= ∅ we can use Schouten’s identity

to derive non-trivial constraints on the kinematical invariants which are not satisfied for

generic momenta.

Recall that the case when I+ = {i} is special and will be treated separately.

Case B: j ∈ R−. In this case, the propagator of interest can be written as

PL(wI(z), z)2 = PL(wI(0))2 + z〈j|PI |i]

(
∑

k∈L+〈j|PL|k]
∑

k∈I+〈j|PI |k]

)

. (3.41)

This is again similar to the corresponding case in MI . The only new case compared to

when j ∈ L− is when L+ is empty. Then nothing in L depends on z and we can consider a

Feynman diagram that has less minus helicity gravitons than the original one and therefore

it goes faster to zero at infinity than the leading diagrams obtained when L+ 6= ∅.

This conclude our discussion about the contribution of the propagators.

3.5 Analysis of the special case I+ = {i}

Let us now consider the final case. This is when I+ = L+ = {i}. This case is quite

interesting since several unexpected cancelations take place. Consider wI(z) given in (3.20).

In this case, it is easy to check that wI(z) = wI(0) − z. A consequence of this is that

λ(i)(wI(z), z) = λ(i)(z)+wI(z)λ(j) becomes z-independent. To see this recall that λ(i)(z) =

λ(i) + zλ(j). Therefore λ(i)(wI(z), z) = λ(i)(wI). This also implies that P h
I (wI(z), z) is z

independent. Therefore, the full amplitude MI is z independent.

Recall that we are interested in the behavior of
∑

h=±

Mh
I

1

P 2
I (z)

M−h
J (z). (3.42)

The propagator 1/P 2
I (z) contributes a factor of 1/z.

Now we have to look at

MJ (z) = MJ

(

{

r−J (wI(z), z)
}

,
{

k+
J (wI(z))

}

, P−h
I (wI(z), z)

)

.

Let us study the z dependence of each graviton carefully. We have that the jth graviton

(which has negative helicity) and all positive helicity gravitons in J+ =
{

k+
J (wI(z))

}

behave as

λ̃(j)(wI(z), z) = λ̃(j)(wI) + z
∑

s∈J+

λ̃(s), λ(s)(wI(z)) = λ(s)(wI) − zλ(j) ∀ s ∈ J +.

(3.43)
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Close inspection of (3.43) shows a striking fact. This deformation is exactly the same as

the one that led to the auxiliary recursion relations in the first place, i.e, the deformation

given in (3.7) but using z instead of w as deformation parameter and λ̃(j)(wI) and λ(s)(wI)

as undeformed spinors. Finally, recall that PI(wI(z), z), which also appears in MJ , was

shown to be z independent.

Now, if h = + we have P−
I (wI) and therefore, MJ (z) is nothing but a physical ampli-

tude under the maximal deformation (3.7). In the appendix, we showed that amplitudes

vanish as the deformation parameter, which in this case is z, is taken to infinity if the

number of pluses is greater than or equal to the number of minuses minus two. To see that

this condition is satisfied in MJ note that since I+ = {i} we have that the total number

of positive helicity gravitons in MJ is p − 1 while that of negative helicity gravitons is

m − mI + 1. Since the number of external negative helicity gravitons in MI must be at

least one, i.e, mI ≥ 1 and recalling that we are studying the case when p ≥ m, we get the

desired result.

The next case to consider is when h = −. Since P+
I (wI) is z independent, the de-

formation (3.43) of MJ is no longer maximal. However, it is possible to show that these

terms are identically zero. This is obvious when the on-shell physical amplitude MI , which

has only one positive helicity graviton, has more than two negative helicity gravitons.

Consider now the case when MI has precisely two negative helicity gravitons. A

three-graviton on-shell amplitude need not vanish if momenta are complex therefore this

is a potentially dangerous case. Three-graviton amplitudes are given as the square of the

gauge theory ones. Therefore we have

MI(i+(wI), s−,−P−
I (wI)) =

(

〈λ(s), λ(P )〉3

〈λ(P ), λ(i)(wI)〉〈λ(i)(wI), λ(s)〉

)2

(3.44)

where as in section III.C we have defined PI(wI)aȧ = λ
(P )
a λ̃

(P )
ȧ .

Since this is a physical amplitude, momentum is conserved which means

λ(i)(wI)aλ̃
(i)
ȧ + λ(s)

a λ̃
(s)
ȧ = λ(P )

a λ̃
(P )
ȧ . (3.45)

For real momenta, this equation implies that all λ′s and all λ̃′s are proportional. Therefore

three-graviton amplitudes must vanish. For complex momenta, this need not be the case

and one can have all λ̃′s be proportional with the λ’s unconstrained. In such a case (3.44)

would not vanish.

We claim that, luckily in our case of interest, all λ′s are proportional and (3.44)

vanishes. To see this note that wI = −〈i, s〉/〈j, s〉 and λ(i)(wI)a = λ
(i)
a + wIλ

(j)
a , therefore

〈λ(i)(wI), λ(s)〉 = 0. Contracting (3.45) with λ(s) a we find 〈λ(P ), λ(s)〉λ̃
(P )
ȧ = 0. Therefore

we must have 〈λ(P ), λ(s)〉 = 0 which completes the proof of our claim.

From (3.44), this condition implies that MI is identically zero. Thus, we can conclude

that the cases of MJ with a non-maximal deformation are not there.

This is the end of our proof. We now turn to some extensions and applications of the

BCFW recursion relations that can be obtained by using Ward identities.
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4. Ward identities

Our proof of the BCFW recursion relations was based on deforming two gravitons of

opposite helicities, i+ and j−, in the following way:

λ(i)(z) = λ(i) + zλ(j), λ̃(j)(z) = λ̃(j) − zλ̃(i). (4.1)

However, it is known that in gauge theory, deformed amplitudes also vanish at infinity if the

helicities (hi, hj) of the deformed gluons are (−,−) or (+,+) [11]. It would be interesting

to prove a similar statement for General Relativity. Here we show that this is indeed very

straightforward in the case of MHV scattering amplitudes if one uses Ward identities.

The Ward identity of relevance for our discussion can be found for example in [40] and

it is given by
MMHV

l,m

〈λ(l), λ(m)〉8
=

MMHV

s,q

〈λ(s), λ(q)〉8
, (4.2)

where the notation MMHV

a,b indicates that the gravitons a and b in this amplitude are the

ones with negative helicity.

Consider first the (+,+) case. We use the Ward identity (4.2) to relate it to the usual

(+,−) case. For clarity purposes, we explicitly exhibit the dependence of the amplitudes

on only four gravitons: {l,m, i, j}. The dependence on the rest of the gravitons (all of

which have positive helicity) will be implicit. Then we have

MMHV

n (i+(z), j+(z), l−,m−) =

(

〈λ(l), λ(m)〉

〈λ(j), λ(l)〉

)8

MMHV

n (i+(z), j−(z), l−,m+). (4.3)

The MHV amplitude on the right hand-side is deformed as in (4.1), thus it vanishes at

infinity by our proof. Since both inner products expressed explicitly in (4.3) do not depend

on z, the amplitude on the left hand side of (4.3), where (hi, hj) = (+,+), will vanish as

z goes to infinity.

Consider now the (−,−) case. Using again the Ward identity (4.2) we have

MMHV

n (i−(z), j−(z), l+,m+) =

(

〈λ(i)(z), λ(j)〉

〈λ(j), λ(l)〉

)8

MMHV

n (i+(z), j−(z), l−,m+) (4.4)

Note that 〈λ(i)(z), λ(j)〉 does not depend on z since λ(i)(z) = λ(i) + zλ(j). Therefore, the

amplitude still vanishes in this case.

In [21], a very nice compact formula was conjectured for MHV amplitudes of gravitons

by assuming the validity of BCFW recursion relations obtained via a deformation of the

two negative helicity gravitons. Our proof and the discussion in this section validates

the recursion relations used to construct the all multiplicity ansatz. It would be highly

desirable to show that the formula proposed by Bedford et al. [21] does indeed satisfy the

recursion relations. The formula is explicitly given by

Mn(1−, 2−, i+1 , . . . , i+n−2) =
〈1, 2〉6[1, in−2]

〈1, in−2〉
G(i1, i2, i3)

n−3
∏

s=3

〈2|i1 + . . . + is−1|is]

〈is, is+1〉〈2, is+1〉

+P(i1, . . . , in−2) (4.5)
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where P(i1, . . . , in−2) indicates a sum over all permutations of (i1, . . . , in−2) and

G(i1, i2, i3) =
1

2

(

[i1, i2]

〈2, i1〉〈2, i2〉〈i1, i2〉〈i2, i3〉〈i1, i3〉

)

. (4.6)

It is also interesting to show why the case (hi, hj) = (−,+) does not lead to recursion

relations. Using the Ward identity (4.2) once again we have

MMHV

n (i−(z), j+(z), l+,m−) =

(

〈λ(i)(z), λ(m)〉

〈λ(i)(z), λ(j)〉

)8

MMHV

n (i−(z), j−(z), l+,m+) (4.7)

The amplitude on the right hand-side vanishes as z goes to infinity. However,

〈λ(i)(z), λ(m)〉8 contributes with a factor of z8 while 〈λ(i)(z), λ(j)〉 is z indepen-

dent. Either using BGK (together with (4.4)) or directly (4.5), one can show that

MMHV

n (i−(z), j−(z), l+,m+) goes like 1/z2, therefore the amplitude with (hi, hj) = (−,+)

behaves as z6 at infinity.

5. Conclusions and further directions

In this paper we have proven that tree level gravity amplitudes in General Relativity are

very special. Contrary to what can be called a naive power counting of the behavior of

individual Feynman diagrams, full amplitudes actually vanish when momenta are taken to

infinity along some complex direction. The naive power counting gives that the amplitudes

diverge. This miraculous property implies that tree amplitudes of gravitons satisfy a special

kind of recursion relations. One in which an amplitude is given as a sum of terms containing

the product of two physical on-shell amplitudes where the momenta of only two gravitons

have been complexified. These recursion relations, originally discovered in [7] in gauge

theory, were proven using the power of complex analysis in [11]. The BCFW construction

opened up the possibility for using complex analysis in many other situations. There are

only two major difficulties when applying the BCFW construction to a general field theory

at any order in perturbation theory. One of them is that complete control of the singularity

structure of the amplitude is required. At tree-level this means poles but at the loop level

one can also have branch cuts. The other one is to have a good control on the behavior

at infinity. In the case of gravity amplitudes this had been the stumbling block. The

way we overcome this obstacle was by constructing auxiliary recursion relations. These

were obtained by exploiting as many polarization tensors as possible in other to tame

the divergent behavior of vertices in individual Feynman diagrams while still keeping the

linear behavior of propagators. In a sense, the deformation we introduced is the “maximal”

choice.

This procedure seems quite general and it would be very interesting to classify field

theories according to whether their amplitudes vanish or not at infinity under this maximal

deformation.
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A. Proof of auxiliary recursion relations

In the main part of the paper we used certain auxiliary recursion relations to prove that

Mn(z) vanishes as z is taken to infinity under the BCFW deformation. It is therefore very

important to establish the validity of the auxiliary recursion relations.

Consider the case when then number of positive helicity gravitons is larger or equal

than the number of negative helicity ones, i.e, p ≥ m. The case when m ≥ p is completely

analogous. Let us start by constructing a rational function Mn(w) of a complex variable

w via the deformation (3.7), i.e,

λ̃(j)(w) = λ̃(j) − w
∑

s∈{k+}

λ̃(s), λ(k)(w) = λ(k) + wλ(j), ∀k ∈ {k+} (A.1)

where j is a negative helicity graviton and {k+} is the set of all positive helicity gravitons

in Mn.

The claim is that Mn(w) vanishes as w is taken to infinity and its only singularities

are simple poles at finite values of w.

A.1 Vanishing of Mn(w) at infinity

Let us prove that Mn(w) vanishes as w → ∞. Consider the leading Feynman diagram that

contributes to Mn(w). Such a diagram has n − 2 cubic vertices each contributing a factor

of w2. It also has p+1 polarization tensors that depend on w and give 1/w2 each. Finally,

we claim that all n− 3 propagators that can possibly depend on w actually do giving each

a contribution of 1/w. Putting all contributions together we find that the leading Feynman

diagrams go like 1/wp−m+3. Therefore, if p ≥ m then Mn(w) → 0 as w → ∞.

We are only left to prove that n − 3 propagators depend on w. A similar statement

has to be proven in section III.D. The proof there is more involved since it requires the

study of many cases. The discussion that follows can be thought of as a warm up for that

in section III.D.

Consider a given Feynman diagram. A propagator naturally divides the diagram into

two sub-diagrams. Let us denote them by I and J . Without loss of generality, we can

always take the jth graviton to be in J . Let us denote the set of positive helicity gravitons

in I by I+.

The propagator under consideration has the form 1/P 2
I (w) with

P 2
I (w) = P 2

I − w
∑

k∈I+

〈j|PI |k] (A.2)
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where PI = PI(0).

The only way the w dependence can drop out of the propagator is that
∑

k∈I+〈j|PI |k] = 0.

Since the jth graviton belongs to J , the condition
∑

k∈I+〈j|PI |k] = 0 can only be

satisfied if the vector
∑

k∈I+ PI aȧλ̃
(k) ȧ vanishes. To see this note that there must be at

least two gravitons in J , one of them j. Therefore we can use momentum conservation to

determine the other one in terms of the other n−1 gravitons. This allows us to consider all

the remaining n−1 gravitons as independent. In particular, the jth graviton is independent

from the ones in I.

Our goal is then to prove that the combination PI aȧ(
∑

k∈I+ λ̃
(k)
ȧ ) cannot vanish for

generic choice of momenta and polarization tensors.

Consider first the case when the set I+ has only one element, say the sth graviton.

Then the vanishing of PI aȧλ̃
(s) ȧ implies that of

∑

k∈I sk,s, where sk,s = (pk + ps)
2. Since

I must have at least two gravitons, the vanishing of
∑

k∈I sk,s is a constraint on the

kinematical invariants which is not satisfied for generic momenta.

Consider the case when I+ has at least two elements. Let one of them be the sth

graviton. Since our starting point is a physical on-shell amplitude, the dependence of the

amplitude on the sth graviton can only be through its polarization tensor and its momentum

vector,

ǫ
+ (s)

aȧ,bḃ
=

µaλ̃
(s)
ȧ µbλ̃

(s)

ḃ

〈µ, λ(s)〉2
, p

(s)
aȧ = λ(s)

a λ̃
(s)
ȧ . (A.3)

If we transform {λ(s), λ̃(s)} into {t−1λ(s), tλ̃(s)} with t4 = 1, i.e., t is any 4th root of unity,

then both ǫ
+ (s)

aȧ,bḃ
and p

(s)
aȧ are invariant. This means that any statement we make for t = 1

must be true for the other three possible values of t. In particular, it must be the case that

PI aȧ(
∑

k∈I+, k 6=s λ̃
(k)
ȧ + tλ̃

(s)
ȧ ) vanishes for all four values of t. Since PI aȧ does not depend

on t the only way to satisfy this condition is if PI · p(s) = 0. This is clearly a condition

that is not satisfied for generic momenta and therefore this possibility is also excluded.

Finally, there is one more possibility to consider. If the set I+ is empty then the w

dependence drops out. Of course, this is not a problem because if the set I+ is empty

it means that nothing on the subdiagram I depends on w, including the cubic vertices.

Therefore, neither propagators nor cubic vertices contribute. One can then concentrate

on the subdiagram J , but this subdiagram has less particles than the total diagram and

the same number of w-dependent polarization tensor. Therefore these diagrams go to zero

even faster than diagrams where I+ is not empty.

A.2 Location of poles and final form of the auxiliary recursion relations

Having proven that Mn(w) vanishes at infinity, we turn to the question of the singularity

structure. We claim that it has only simple poles coming from propagators in Feynman

diagrams. Again as in section II where we discussed the BCFW deformation, one has that

the poles generated by the w dependence in the polarization tensors can be eliminated

by a gauge choice. We pick the reference spinor of each of the polarization tensors of
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the positive helicity gravitons to be µa = λ
(j)
a and that of the jth helicity graviton to be

µ̃ȧ =
∑

k∈{k+} λ̃(k).

We have already given the structure of propagators in (A.2) from where we can imme-

diately read off the location of the poles to be

wI =
P 2
I (0)

∑

k∈I+〈j|PI(0)|k]
. (A.4)

Finally, we need the fact that a rational function that vanishes at infinity and only has

simple poles can be written as Mn(w) =
∑

α cα/(w − wα) where the sum is over the poles

and cα are the residues. The residues in this case can be determined from factorization

limits since all poles come from physical propagators.

Collecting all results we arrive at the final form of the auxiliary recursion relation used

in the text (3.9):

Mn({r−}, {k+}) =

=
∑

I

∑

h=±

MI

(

{

r−I
}

,
{

k+
I (wI)

}

,−P h
I (wI)

) 1

P 2
I

MJ

(

{

r−J (wI)
}

,
{

k+
J (wI)

}

, P−h
I (wI)

)

.

(A.5)
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